━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░█
█░░████░░██░░██░█████░░█████░░█████░██░░░██░░░░████░░█████░░░████░░█████░██░░██░░████░░██░░██░██░░██████░░░░░░░░░░░░░░░░░░█
█░██ ██ ███ ██ ██ ██ ██ ██ ██ ░██ ░░██ ░░██ ██ ██ ██ ██ ░░██ ░███ ██ ██ ██ ██ ░██ ██ ░ ██ ░░░░░░░░░░░░░░░░░░█
█░██████ ██ ███ ██░░██ █████ ░████ ░██ █░██ ░░██████ █████ ░░████ ░████ ░██ ███ ██████ ██ ░██ ██ ░░░██ ░░░░░███░███░██░██░█
█░██ ██ ██ ██ ██░░██ ██ ██ ██ ░███████ ░░██ ██ ██ ██ ░ ██ ██ ░██ ██ ██ ██ ██ ░██ ██ ░░░██ ░░░░░█ ░█ █░█ █ █ █
█░██░░██ ██ ░██ █████ ██ ░██ █████ ██ ██ ░░██ ░██ ██ ░██ ░████ █████ ██ ░██ ██░░██ ████ █████ ██ ░░██ ███ ███ █ ░█ █
█░ ░░ ░ ░ ░ ░ ░ ░░░ ░ ░ ░ ░ ░ ░░ ░ ░ ░░ ░░ █
█░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░█
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
Octave | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|---|
C | 8.1758 | 16.352 | 32.703 | 65.406 | 130.81 | 261.63 | 523.25 | 1046.5 | 2093.0 | 4186.0 | 8372.0 |
C#/Db | 8.6620 | 17.324 | 34.648 | 69.296 | 138.59 | 277.18 | 554.37 | 1108.7 | 2217.5 | 4434.9 | 8869.8 |
D | 9.1770 | 18.354 | 36.708 | 73.416 | 146.83 | 293.66 | 587.33 | 1174.7 | 2349.3 | 4698.6 | 9397.3 |
D#/Eb | 9.7227 | 19.445 | 38.891 | 77.782 | 155.56 | 311.13 | 622.25 | 1244.5 | 2489.0 | 4978.0 | 9956.1 |
E | 10.301 | 20.602 | 41.203 | 82.407 | 164.81 | 329.63 | 659.26 | 1318.5 | 2637.0 | 5274.0 | 10,548 |
F | 10.913 | 21.827 | 43.654 | 87.307 | 174.61 | 349.23 | 698.46 | 1396.9 | 2793.8 | 5587.7 | 11,175 |
F#/Gb | 11.562 | 23.125 | 46.249 | 92.499 | 185.00 | 369.99 | 739.99 | 1480.0 | 2960.0 | 5919.9 | 11,840 |
G | 12.250 | 24.500 | 48.999 | 97.999 | 196.00 | 392.00 | 783.99 | 1568.0 | 3136.0 | 6271.9 | 12,544 |
G#/Ab | 12.978 | 25.957 | 51.913 | 103.83 | 207.65 | 415.30 | 830.61 | 1661.2 | 3322.4 | 6644.9 | 13,290 |
A | 13.750 | 27.500 | 55.000 | 110.00 | 220.00 | 440.00 | 880.00 | 1760.0 | 3520.0 | 7040.0 | 14,080 |
A#/Bb | 14.568 | 29.135 | 58.270 | 116.54 | 233.08 | 466.16 | 932.33 | 1864.7 | 3729.3 | 7458.6 | 14,917 |
B | 15.434 | 30.868 | 61.735 | 123.47 | 246.94 | 493.88 | 987.77 | 1975.5 | 3951.1 | 7902.1 | 15,804 |
All note frequencies above are accurate within 1/10th of a cent for 12 tone equal temperament.
The Syntonic Comma ratio of 81:80 (21.51 cents) is considered out of tune to even an untrained listener meanwhile, anything within +/-5 cents is more then passable for being "in tune".
____________________________________________________ ┃ ┃ ┃ STEINWAY & SONS ┃ ┃──────────────────────────────────────────────────┃ ┗─║█║█║║█║█║█║║█║█║║█║█║█║║█║█║║█║█║█║║█║█║║█║█║█║─┛ ║█║█║║█║█║█║║█║█║║█║█║█║║█║█║║█║█║█║║█║█║║█║█║█║ ║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║ ╚╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╝
Equal temperament tuning is the fine art of putting all notes equally out of tune with each other.
__________________________________________________ ┃ ┃ ┃ YAMAHA ┃ ┃__________________________________________________┃ ┃ ║█║█║║█║█║█║║█║█║║█║█║█║║█║█║║█║█║█║║█║█║║█║█║█║ ┃ ┃ ║█║█║║█║█║█║║█║█║║█║█║█║║█║█║║█║█║█║║█║█║║█║█║█║ ┃ ┃ ║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║║ ┃ ┃ ╚╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╩╝ ┃ ┗──────────────────────────────────────────────────┛
© 2021-2025 Andrew L. Arsenault, CCST. - This site was created with GNU Nano and is best viewed with Lynx Browser.